в

Какая минимальная нагрузка влияет на рост мышц часть 1

Существует ли минимальный порог интенсивности для стимуляции адаптационной гипертрофии при тренировке с отягощениями?

Интересная статья С.Струкова, в которой он сделал анализ статей по определению пороговых воздействий для гипертрофии мышечных волокон. Я намеренно публикую полную версию, чтобы можно было оценить глубину изучения вопроса. Один список литературы поражает. В скобках указан источник из списка литературы.

  • Мышечная ткань проявляет высокий уровень пластичности, позволяя быстро приспосабливаться к срочному и хроническому воздействию (1).
  • Исследования наглядно показали, что в ответ на функциональную перегрузку мышечная ткань отвечает увеличением площади поперечного сечения (ППС).
  • Пассивное растягивание на животной модели, хирургическое удаление одной мышцы, вызывающее перегрузку синергиста, и нервно-мышечная электростимуляция приводят к гипертрофическому увеличению мышцы до 100% (2).
  • Систематическая тренировка с отягощениями приводит к заметному увеличению массы скелетных мышц (3, 4). Несмотря на то, что гипертрофии подвержены все типы волокон, быстро сокращающиеся (БС) волокна демонстрируют приблизительно на 50% большую способность к увеличению по сравнению с медленно сокращающимися (МС) волокнами (2, 5).
  • Тем не менее, существует высокий уровень индивидуальных различий в размере адаптационной гипертрофии в пределах спектра типов мышечных волокон (5).

Предложено три основных фактора, которые вызывают адаптационную гипертрофию в ответ на тренировку с отягощениями: механическое напряжение, метаболический стресс и повреждения мышц (3). Большое количество исследований подтвердило ведущую роль напряжения в этом процессе (6, 7). Тем не менее, при достижении высокого уровня механического напряжения метаболический стресс и повреждение тканей могут становиться важными факторами, оптимизирующими гипертрофический ответ (8, 9). Имеющиеся на сегодняшний день данные не позволяют выделить конкретный, преобладающий параметр для активации клеточных и молекулярных механизмов, ответственных за регулирование роста мышц (2).

Согласно традиционным методам тренировки с отягощением, для существенного увеличения размеров мышц необходима интенсивность концентрического сокращения ~60% ПМ (10 – 12). Предположительно, что это минимальный уровень, необходимый для активации всего спектра мышечных волокон, в частности, составляющих наибольшие ДЕ (13). Тем не менее, появляются данные, что тренировка с отягощениями низкой интенсивности может вызывать существенную гипертрофию мышц, во многих случаях эквивалентную традиционным упражнениям высокой интенсивности (14). Ограничение кровотока осуществляется путём пережатия (например, в области колена или локтя) проксимальной части конечности. В результате существенно уменьшается кровоток работающих мышц при выполнении упражнений с отягощением.

Анаболический эффект тренировки с применением окклюзии обусловлен повышением уровня метаболического стресса, например, образованием метаболитов гликолитического пути производства энергии. Предполагают, что метаболический стресс способствует гипертрофии, по крайней мере, отчасти, путём увеличения рекрутирования высокопороговых ДЕ (15), но другие механизмы также, по-видимому, играют роль в процессе, включающем клеточный отёк, повышение уровней гормонов, а также увеличение образования активных форм кислорода (16, 17).

В последнее время несколькими исследователями предложена теория, что упражнения низкой интенсивности (≤50%ПМ), выполняемые без ограничения кровотока, могут вызывать увеличение размеров мышц, аналогичное или, возможно, даже большее, чем тренировка более высокой интенсивности, если упражнения выполняются до произвольного мышечного отказа (4, 18). Приверженцы теории утверждают, что сокращения до утомления с низкими нагрузками представляют собой мягкую форму ограничения кровотока и, таким образом, приводят к максимальному рекрутированию мышечных волокон (19). Предполагается, что пока применяется прогрессивное увеличение нагрузки, даже наиболее тренированные спортсмены могут существенно увеличить мышечную массу, применяя тренировку низкой интенсивности (19). Принимая это во внимание, цель этого обзора — оценка литературных данных для установления минимальной интенсивности, необходимой для адаптационной гипертрофии. Научно обоснованные рекомендации помогут разработке тренировочных программ, направленных на гипертрофию.

Данные для анализа подбирались из англоязычных статей, которые искали при помощи PubMed, EBSCO и Google Scholar databases, вышедших до декабря 2012 с применением слов или их сочетаний: ‘skeletal muscle’; ‘hypertrophy‘; ‘muscle growth‘; ‘cross sectional area‘; ‘intensity‘; ‘loading‘; ‘low load‘; ‘repetition range‘; ‘resistance training’; ‘resistance exercise’. На основе найденных статей продолжали поиск среди связанных с ними публикаций.

Теоретические основания для адаптационной гипертрофии при низкой интенсивности:

Максимальная гипертрофия предполагается при рекрутировании наибольшего количества ДЕ в целевой мышце и достаточного по времени поддержания высокого уровня активации этих ДЕ (11). Механизм, посредством которого механические усилия ведут к мышечной адаптации, понятен не полностью. Согласно современным представлениям, процесс регулируется феноменом, называемым «механотрансдукция»: встроенные в сарколемму механосенсоры (интегрины и белки фокальной адгезии) преобразуют механическую энергию в химические сигналы, которые регулируют внутриклеточные анаболические и катаболические пути, приводя к смещению баланса мышечных белков в сторону синтеза или деградации (20). Необходима суммация анаболических сигналов адекватной величины для производства устойчивого ответа, ведущего к накоплению мышечных белков (21).

Обнаружено множество сигнальных путей, которые отчасти регулируют массу мышцы. Некоторые из них играют разрешающую роль, тогда как другие непосредственно управляют клеточными процессами, оказывающими влияние на трансляцию иРНК и гипертрофию (22). Среди идентифицированных путей можно выделить фосфатидилинозитол-3-киназу, киназу В-мишень для рапамицина у млекопитающих, митоген-активированную протеинкиназу (МАРК) и различные Са2+-зависимые пути. Несмотря на возможность пересечения ключевых путей регуляции, есть подтверждения, что они скорее дополняют действия друг друга (23). Например, Akt и МАРК/киназы, связанные с внеклеточными сигналами (ERK), проявляют аналогичную по величине способность стимулировать мишень для рапамицина у млекопитающих. При этом совместное действие вызывает большую стимуляцию, чем один из путей (24). Подробное рассмотрение этих сигнальных путей выходит за рамки данного обзора, заинтересованные читатели могут обратиться к недавним работам Bassel-Duby and Olson (25), Miyazaki and Esser (26) и Glass (27). Предполагается, что рекрутирование всего спектра ДЕ — необходимое условие для гипертрофии — может происходить при любой интенсивности тренировки, в том числе и низкой, если упражнения выполняются до концентрического мышечного утомления (18).

Тем не менее, может ли так происходить на практике, остаётся под вопросом. Существуют данные, что сокращения до утомления сопровождаются увеличением электрокимографической (ЭМГ) активности, предположительно связанным с повышением включения высокопороговых ДЕ, рекрутирующихся для поддержания необходимого уровня усилия (28). При этом не ясно, какой уровень интенсивности требуется для инициирования активации этих высокопороговых ДЕ. Более того, упражнения с отягощениями ниже определённого уровня интенсивности становятся в большей степени зависимыми от аэробного метаболизма. И, таким образом, увеличивается промежуток времени для верхней границы устойчивого состояния. Это перераспределение участия систем энергообеспечения предположительно вызовет конкурентное взаимодействие анаболических и катаболических сигнальных путей, приводящее к адаптации преимущественно «на выносливость», а не «на силу» (29).

Исследований в поддержку предположения, что тренировка низкой интенсивности до отказа аналогична мягкой форме ограничения кровотока, недостаточно. Wembom et al (4) показали одинаковый пик ЭМГ активности при разгибаниях голени одной ноги в трёх подходах с интенсивностью (30%ПМ), выполненных до отказа с применением ограничения кровотока и без ограничения. Средние значения не сообщались, таким образом, невозможно проанализировать рекрутирование мышц на протяжении подходов. Необходимы дальнейшие исследования для лучшего понимания связи между рекрутированием мышцы и упражнениями низкой интенсивности с применением ограничения кровотока и без ограничения.

Существуют данные, что рекрутирование мышц в действительности больше при упражнениях высокой интенсивности по сравнению с упражнениями низкой интенсивности с ограничением кровотока. Применив модель, оценивающую образование неорганического фосфата 31P магнитно-резонансной спектроскопией, Suga et al (30) обнаружили, что происходит рекрутирование только 31% БС волокон у субъектов, выполняющих упражнения с ограничением кровотока при интенсивности 20% ПМ, и 70% у тех, кто тренировался с 65% ПМ. Эти данные согласуются с прежними исследованиями, продемонстрировавшими, что при упражнениях, которые выполняются с большей интенсивностью ЭМГ, активность существенно выше, по сравнению с упражнениями с ограничением кровотока при 20% ПМ, показывая снижение рекрутирования при низкой интенсивности тренировки (31, 32). В следующей работе Suga et al (33) обнаружили, что образование неорганического фосфата достигает пика при использовании нагрузки 30% ПМ, приближаясь к уровням упражнений высокой интенсивности, но всё же не достигают аналогичного уровня рекрутирования мышечных волокон. Только тогда, когда упражнения с ограничением кровотока выполняли с интенсивностью 40% ПМ, пики неорганического фосфата были равнозначны и даже превышали уровни, наблюдаемые при традиционной тренировке высокой интенсивности. В поддержку этих выводов Cook et al (34) недавно продемонстрировали, что амплитуда ЭМГ в латеральной и медиальной широкой, а также в прямой мышце бедра при выполнении разгибаний голени до отказа была существенно выше при высокой интенсивности (70%ПМ), чем при низкой интенсивности (20%ПМ), как с ограничением кровотока, так и без него. Недостаток вышеупомянутых исследований – использование разгибаний голени; в будущих исследованиях необходимо использовать различные одно- и многосуставные движения, выполняемые до отказа, с варьированием относительной интенсивности для лучшего понимания темы.

Срочное воздействие упражнений с отягощениями разной интенсивности:

В нескольких исследованиях на животных оценивали влияние разной интенсивности ни срочный сигнальный ответ. Применив модель in situ, Martineau et al (35) изучали пиковые концентрические, эксцентрические и изометрические сокращения подошвенной мышцы крысы, вызванные электростимуляцией. Обнаружено зависящее от напряжения фосфорилирование cJun N-концевой киназы (JNK) м ERK, при большем фосфорилировании с увеличением механического напряжения. Это значит, что максимальное напряжение лучший показатель фосфорилирования МАРК, чем время под нагрузкой или скорость развития напряжения. Примечательно, что в последующих работах этой лаборатории обнаружена линейная зависимость между временем под нагрузкой и сигнальным путём JNK, в то же время изменение скорости развития напряжения не оказывало влияния, подтверждая значимость времени под нагрузкой для анаболических сигналов (36). В совокупности эти результаты показывают важность общего объёма тренировочной нагрузки для максимального срочного молекулярного ответа, связанного с гипертрофией скелетных мышц, независимо от интенсивности тренировок.

Для выяснения срочного влияния интенсивности тренировки на организм человека Kumar et al (37) исследовали воздействие упражнений с интенсивностью 20 – 90% ПМ на здоровых молодых и пожилых людей. Согласно протоколу, объём нагрузок разной интенсивности был приблизительно равным. Таким образом, при интенсивности 20% испытуемые выполняли три подхода по 27 повторений; при интенсивности 40% — три подхода по 14 повторений; при интенсивности 60%- три подхода по 9 повторений; при интенсивности 75% — три подхода по 8 повторений; при интенсивности 90% — шесть подходов по 3 повторения. Увеличение синтеза мышечных белков (СМБ) было минимальным после упражнений с интенсивностью 20% и 40% ПМ, но существенно повысилось при 60% ПМ и достигло плато. Аналогичным образом, фосфорилирование p70S6K было максимальным при интенсивности 60 – 90% ПМ, с пиком непосредственно перед максимальным повышением СМБ. Результаты были справедливы и для молодых, и для пожилых людей, подтверждая, что стимулирующее воздействие изотонических упражнений достигает максимума при ~60-75% ПМ. Авторы не отметили, выполнялась ли нагрузка низкой интенсивности до отказа, но, если основываться на схеме исследования, это не являлось целью. Это очень важное ограничение, так как экспериментально показано, что гипертрофия в ответ на тренировку с низкой нагрузкой предполагается, если повторения выполняются до точки произвольного мышечного отказа (39 – 40).

Burd et al (39) предприняли попытку определить, как интенсивность упражнений влияет на СМБ и анаболические сигнальные пути. Пятнадцать молодых, рекреационно активных людей выполнили четыре подхода разгибаний голени одной ногой с интенсивностью 30% и 90% ПМ до произвольного мышечного утомления каждый. В третий раз упражнение выполнялось с интенсивностью 30% ПМ с работой (повторения х нагрузку) равной 90% ПМ. Спустя 4 часа после окончания каждой из нагрузок, СМБ был повышен, но уровни в случае 30% с работой, равной 90% ПМ, были примерно вполовину ниже, чем после других нагрузок. Примечательно, что СМБ миофибрилл оставался повышенным спустя сутки после упражнений лишь при нагрузке 30% ПМ до отказа. Фосфорилирование p70S6K существенно повышалось спустя 4 часа только при 30% ПМ до отказа, и это повышение коррелировало с уровнем стимуляции СМБ миофибрилл. Согласно полученным данным, упражнения, выполняемые с низкой интенсивностью до отказа, вызывают больший срочный мышечный ответ, по сравнению с упражнениями высокой интенсивности. Факт, что объём работы был существенно выше при выполнении нагрузки 30% ПМ до отказа по сравнению с нагрузкой 90%ПМ, не позволяет выделить влияние интенсивности в исследовании.

Несмотря на то, что исследования предоставляют необходимые подтверждения относительно анаболического эффекта упражнений с различной интенсивностью, их результаты не позволяют прогнозировать долговременные изменения массы мышц. Выявленные изменения СМБ после однократной нагрузки тренировкой с отягощениями не всегда происходят параллельно с долговременным увеличением активности миогенных сигналов (41) и могут не соответствовать гипертрофическому ответу у тренированных людей в случае, когда тренировка проводится в подобном режиме в течение недель или месяцев (42). Кроме того, к срочным реакциям субъектов с минимальным опытом тренировок необходимо относится с осторожностью, так как результаты могут быть вызваны детренированностью и, таким образом, не соотноситься с реакцией хорошо тренированных людей (2, 43). Принимая во внимание эти ограничения, любая попытка экстраполяции данных по адаптационной гипертрофии в лучшем случае спекулятивна.

Источник информации, включая список литературы: http://fitness-pro.ru (2014).

Автор публикации Сергей Иванов

Безвыходных ситуаций не существует. Существуют люди не желающие искать выход.

Добавить комментарий

Эффект приема антиоксидантов для спортсменов

Шоссейная велосипедная гонка Granfondo Eddy Merckx 2016